ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализаторы спектра FSH13, FSH20

Назначение средства измерений

Анализаторы спектра FSH13, FSH20 предназначены для визуального наблюдения и измерений частоты и уровня, составляющих спектра периодически повторяющихся сигналов и стационарных шумов в полевых условиях измерений, а также S-параметров коаксиальных многополюсников.

Описание средства измерений

Принцип действия анализаторов спектра FSH13, FSH20 основан на гетеродинном переносе исследуемого сигнала на промежуточную частоту (ПЧ) и последующей его обработке с помощью аналогово-цифрового преобразователя (АЦП) с блоком цифровой обработки. При измерении S-параметров принцип действия анализатора основан на подаче на тестируемое устройство высокочастотного сигнала, формируемого в приборе синтезатором высокой частоты, и измерении отклика от устройства с помощью приемника, работающего на гетеродинном принципе, и моста для разделения падающей и отраженной мощности. Источником опорной частоты для синтезатора высокой частоты и приемника служит кварцевый генератор частотой 10 МГц. Результаты измерений выводятся на экран анализатора в виде спектрограмм и числовых значений.

В режиме измерения S-параметров в приборе предусмотрена коррекция систематических погрешностей при калибровке.

Конструктивно анализаторы спектра FSH13, FSH20 выполнены в виде портативного моноблока. На передней панели прибора расположены индикатор и клавиатура управления. На торцах анализатора расположены измерительные разъемы N-типа, интерфейсы USB, LAN и для SD-карты, разъем питания, батарейный отсек, гнезда BNC входа опорной частоты и выхода промежуточной частоты. Анализатор поставляется в ударозащищенном корпусе.

Анализаторы спектра FSH13, FSH20 позволяют выполнять измерения частотных и амплитудных параметров спектра сигналов в автоматическом и ручном режимах. Полученные спектрограммы и результаты измерений могут быть записаны в различных форматах во внутреннюю память, на внешний носитель, а также переданы на компьютер через интерфейсы USB, LAN. Опционально возможно дистанционное управление прибором.

Модели анализаторов спектра FSH13, FSH20 отличаются диапазоном частот.

Анализаторы спектра FSH13, FSH20 имеют следующие опции:

К14 – режим спектрограмм;

К15 – анализ интерференционных сигналов;

К16 – географическая привязка измерений к карте;

К40 – дистанционное управление;

K42 – режим анализатора цепей.

Общий вид анализаторов спектра FSH13, FSH20, обозначение модели, диапазона частот, места нанесения знака утверждения типа и схема пломбировки от несанкционированного доступа представлены на рисунке 1.

Рисунок 1 – Общий вид средства измерений

Программное обеспечение

Программное обеспечение (ПО) «FSH Firmware» предназначено только для работы с анализаторами спектра FSH13, FSH20 и не может быть использовано отдельно от их измерительно-вычислительной платформы.

Метрологически значимая часть ПО и измеренные данные не требуют специальных средств защиты от преднамеренных и непреднамеренных изменений. Уровень защиты программного обеспечения «низкий» в соответствии с Р 50.2.077-2014.

Идентификационные данные метрологически значимой части ПО анализаторов спектра FSH13, FSH20 приведены в таблице 1.

Таблица 1 - Идентификационные данные программного обеспечения

Идентификационные данные (признаки)	Значение
Идентификационное наименование ПО	FSH Firmware
Номер версии (идентификационный номер) ПО не ниже 2	
Цифровой идентификатор ПО	-

Метрологические и технические характеристики

Основные метрологические и технические характеристики анализаторов спектра FSH13, FSH20 приведены в таблицах 2 и 3.

Таблица 2 – Метрологические характеристики

Таолица 2 – Метрологические характеристики	<u> </u>
Наименование характеристики	Значение
1	2
Диапазон рабочих частот, Гц:	
- для моделей FSH13	от 9·10 ³ до 13,6·10 ⁹
- для моделей FSH20	от 9·10 ³ до 20·10 ⁹
Пределы допускаемой относительной погрешности частоты опорного	±1·10 ⁻⁶
генератора 10 МГц	±1.10
Режим анализатора спектра	
Номинальные значения полос пропускания на уровне -3 дБ, кГц	от 0,001 до 3000
	(дискретно с шагом 1, 3)
Пределы допускаемой относительной погрешности номинальных	
значений полос пропускания, %	
- в полосе пропускания от 1 Гц до 300 кГц включ.	±5
- в полосе пропускания св. 300 кГц до 3 МГц	±10
Значения уровня фазовых шумов в полосе пропускания 1 Гц	
относительно уровня несущей на частоте 500 МГц при отстройке, дБ,	
не более:	
- 30 κΓμ	-95
- 100 κΓιμ	-100
- 1 MΓ _Ц	-120
Значения среднего уровня собственных шумов, нормализованные к	
полосе пропускания 1 Гц при нагрузке на входе 50 Ом, при полосе	
пропускания 100 Гц, ослаблении 0 дБ, в диапазоне частот, дБ	
относительно 1 мВт, не более:	
предусилитель ВЫКЛ.	
- от 9 кГц до 100 кГц включ.	-96
- св. 100 кГц до 1 МГц включ.	-115
- св. 1 до 10 МГц включ.	-136
- cв. 10 MГц до 2 ГГц включ.	-141
- св. 2 до 3,6 ГГц включ.	-138
- cв. 3,6 до 5 <u>ГГ</u> ц включ.	-142
- св. 5 до 6,5 ГГц включ.	-140
- св. 6,5 до 13,6 ГГц включ.	-136
- св. 13,6 до 18 ГГц включ.	-134
- св. 18 до 20 ГГц	-130

Продолжение таблицы 2

продолжение таолицы 2	2
1	2
предусилитель ВКЛ.	122
- от 100 кГц до 1 МГц включ	-133
- св. 1 до 10 МГц включ	-155
- св. 10 МГц до 1 ГГц включ	-161
- св. 1 до 2 ГГц включ	-159
- св. 2 до 5 ГГц включ	-155
- св. 5 до 6,5 ГГц включ	-151
- св. 6,5 до 8 ГГц включ	-147
- св. 8 до 13,6 ГГц включ	-158
- св. 13,6 до 18 ГГц включ	-155
св. 18 до 20 ГГц	-150
Значения относительного уровня помех, обусловленных	
интермодуляционными искажениями третьего порядка по входу	
смесителя при воздействии на вход двух синусоидальных сигналов	
равных амплитуд с уровнем -20 дБ относительно 1 мВт, ослаблении	
0 дБ, в диапазоне частот, дБ относительно уровня несущей, не более:	
- от 9 кГц до 300 МГц включ.	-54
- св. 300 МГц до 3,6 ГГц включ.	-60
- св. 3,6 до 20 ГГц	-46
Значения относительного уровня помех, обусловленных	-
гармоническими искажениями второго порядка при уровне сигнала на	
входе смесителя -20 дБ относительно 1 мВт, в диапазоне частот, дБ	
относительно уровня несущей, не более	
- от 20 МГц до 1,5 ГГц включ.	-60
- св. 1,5 до 3 ГГц включ.	-50
- cв. 3 до 4 ГГц включ.	-40
- св. 4 до 10 ГГц	-80
Пределы допускаемой погрешности измерений уровня мощности	00
0 дБ (1 мВт) на частоте 100 МГц, дБ	±0,3
Неравномерность амплитудно-частотной характеристики	
относительно уровня мощности на частоте 100 МГц в диапазоне	
частот, дБ, не более:	
 - от 9 кГц до 10 МГц включ. 	±1,5
- св. 10 МГц до 3,6 ГГц включ.	±1,0
- св. 3,6 до 20 ГГц	±1,5
Пределы допускаемой абсолютной погрешности измерений уровня	
мощности из-за нелинейности шкалы в диапазоне от 0 до 50 дБ, дБ	±0,2
Пределы допускаемой абсолютной погрешности из-за переключения	±0,3
ослабления входного аттенюатора на частоте 100 МГц, дБ	_0,5
Пределы допускаемой абсолютной погрешности из-за переключения	±0,1
полос пропускания относительно полосы пропускания 10 кГц, дБ	_∪,1
Пределы допускаемой абсолютной погрешности установки опорного	±0,1
уровня, дБ	±∪,1

Окончание таблицы 2

1	2	
Режим измерения коэффициента отражения (S22) и коэффициента передачи (S12)		
Диапазон частот, Гц	от 3·10 ⁵ до 8·10 ⁹	
Пределы допускаемой абсолютной погрешности измерений		
коэффициента отражения, дБ, в диапазонах		
- от 0 до 15 дБ включ.	±1,5	
- св. 15 до 25 дБ	±3,0	
Пределы допускаемой абсолютной погрешности измерений фазы		
коэффициента отражения, градусов, в диапазонах		
- от 0 до 15 дБ включ.	±3	
- св. 15 до 25 дБ	±6	
Пределы допускаемой абсолютной погрешности измерений		
коэффициента передачи, дБ, для динамического диапазона:		
- от 0 до 20 дБ включ.	$\pm 0,1$	
- от 0 до 50 дБ	$\pm 0,2$	
Пределы допускаемой абсолютной погрешности измерений фазы		
коэффициента передачи, градусов	±3	
Тип измерительных разъемов	N, розетка, 50 Ом	
КСВН измерительных разъемов, на частотах, не более:		
- от 100 кГц до 1 ГГц включ.	1,5	
- св. 1 до 6 ГГц включ.	2 3	
- св. 6 до 20 ГГц	3	

Таблица 3 – Основные технические характеристики

таблица 5 Основные техни неские характеристики	
Наименование характеристики	Значение
Напряжение питания, В	
- переменное с адаптером HA-Z201 частотой 50±0,5 Гц	230±23
- постоянное (внешнее)	15±1
- встроенная батарея	7
Потребляемая мощность, В.А, не более	12
Габаритные размеры (ширина×высота×глубина), мм, не более	194×300×144
Масса, кг, не более	3
Рабочие условия эксплуатации:	
- температура окружающей среды, °С	от 0 до +50
- относительная влажность воздуха при температуре 40°C, %, не более	85

Знак утверждения типа

наносится на лицевую панель анализаторов спектра FSH13, FSH20 методом наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

Таблица 4 – Комплектность средства измерений

Наименование	Обозначение	Количество
Анализатор спектра	FSH13, FSH20	1 шт.
Батарея питания	-	1 шт.
Кабель USB	-	1 шт.
Кабель LAN	-	1 шт.
Адаптер питания от сети переменного тока	HA-Z201	1 шт.
Опции к анализатору:		по заказу
- режим спектрограмм	FSH-K14	
- анализ интерференционных сигналов	FSH-K15	
- географическая привязка измерений к карте	FSH-K16	
- дистанционное управление	FSH-K40	
- режим анализатора цепей	FSH-K42	
Руководство по эксплуатации	-	1 экз.
Методика поверки	МП РТ 2107-2014	1 экз.

Поверка

осуществляется по документу МП РТ 2107-2014 «Анализаторы спектра FSH13, FSH20. Методика поверки», утвержденному ФБУ «Ростест-Москва» "22" мая 2014 г.

Основные средства поверки:

- стандарт частоты рубидиевый GPS-12RG (регистрационный номер в Федеральном информационном фонде 43830-10);
- генератор сигналов СВЧ R&S SMF100A (регистрационный номер в Федеральном информационном фонде 39089-08);
- ваттметр проходящей мощности СВЧ NRP-Z28, NRP-Z98 (регистрационный номер в Федеральном информационном фонде 43643-10);
- ваттметр поглощаемой мощности СВЧ NRP-Z31 (регистрационный номер в Федеральном информационном фонде 43642-10);
- комплект мер комплексных коэффициентов передачи и отражения 05СК200-150 (регистрационный номер в Федеральном информационном фонде 53218-13);
- векторный анализатор электрических цепей ZVA24 (регистрационный номер в Федеральном информационном фонде 37174-08).

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные и технические документы, устанавливающие требования к анализаторам спектра FSH13, FSH20

Техническая документация фирмы "Rohde & Schwarz GmbH & Co. KG", Германия

Изготовитель

Фирма «Rohde & Schwarz Technologies Malaysia Sdn Bhd», Малайзия

Адрес: PLO 227 Jalan Kencana Mas 2, Kawasan Perindustrian Tebrau III, 81100 Johor Bahru, Malaysia

Телефон: +65 65 13 04 88

Web-сайт: https://www.rohde-schwarz.com E-mail: customersupport@rohde-schwarz.com

Заявитель

Общество с ограниченной ответственностью «РОДЕ и ШВАРЦ РУС» (ООО «РОДЕ и ШВАРЦ РУС»)

ЙНН 7710557825

Адрес: 115093, г. Москва, Нахимовский пр-кт, д. 58, комн. 16, этаж 6

Телефон: +7 (495) 981-35-60 Факс: +7 (495) 981-35-65

Web-сайт: https://www.rohde-schwarz.com/ru E-mail: sales.russia@rohde-schwarz.com

Испытательный центр

Федеральное бюджетное учреждение «Государственный региональный центр стандартизации, метрологии и испытаний в г. Москве и Московской области»

(ФБУ «Ростест-Москва»)

Адрес: 117418, г. Москва, Нахимовский проспект, д. 31

Телефон: +7 (495) 544-00-00 Web-сайт: <u>http://www.rostest.ru</u>

Регистрационный номер RA.RU.310639 в Реестре аккредитованный лиц в области обеспечения единства измерений Росаккредитации.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

A.B.	Кулешов
------	---------

М.п. «____»____2020 г.